PERFORMANCE OF BACKPROPAGATION NEURAL NETWORKS FOR CULTIVATION DAILY LOADS IN JAW A CENTRAL-DIY
Abstract
Goals  of this research  are implementing   Artificial  Neural  Network (ANN) algorithm for load forecasting  and getting its performance.  The training data was takenfrom    UPB Ungaran. The performance  can be got through comparing ANN test result with the real load at that time. The  research   methodology   usc  experimental    and  design   models approach.   The    phases   of this  research   were:   I.  analyzing   and identifying   of need   2. developing   of load forecasting    application software with C programming.  3. entering and training the data to get data pattern.
The result of this research.  the load forecasting result by ANN was close with UPB loadforecasting.   but several ANN test result have more deviation than UPB. because number of training data was less. so the forecasting    pattern   111as not  too  accurate    Beside   that.  another possibility  was the number of iteration must be more than / ()()(J times
iterations  in order to get more less error.  There was 33,3% of ANN result that has more less deviation,  although  the number  of training data was not different, because that data has no extrem variation, so
the pattern  was faster  to be recognized.  Generally,  ANN will give an accurate pattern recognation   if the data is valid and the number of the data is quite enough.
The result of this research.  the load forecasting result by ANN was close with UPB loadforecasting.   but several ANN test result have more deviation than UPB. because number of training data was less. so the forecasting    pattern   111as not  too  accurate    Beside   that.  another possibility  was the number of iteration must be more than / ()()(J times
iterations  in order to get more less error.  There was 33,3% of ANN result that has more less deviation,  although  the number  of training data was not different, because that data has no extrem variation, so
the pattern  was faster  to be recognized.  Generally,  ANN will give an accurate pattern recognation   if the data is valid and the number of the data is quite enough.
Full Text:
PDFDOI: https://doi.org/10.21831/jps.v11i1.5465
Refbacks
- There are currently no refbacks.
Copyright (c)
 p-ISSN: 1412-3991 || e-ISSN: 2528-7036
Indexed by:
View My StatsÂ
Jurnal Penelitian Saintek by http://journal.uny.ac.id/index.php/saintek is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.