What ‘s wrong with the Asian and African Students’ mathematics learning achievement? The multilevel PISA 2015 data analysis for Indonesia, Japan, and Algeria
Abstract
Keywords
Full Text:
FULLTEXT PDFReferences
Anderson, J. O., Lin, H. S., Treagust, D. F., Ross, S. P., & Yore, L. D. (2007). Using large-scaleeassessment datassets for research in science and mathematics education: Programme for International Student Assessment (PISA). International Journal of Science and Mathematics Education, 5, 591–614. doi:10.1007/s10763-007-9090-y.
Byrnes, J. P., & Miller, D. C. (2007). The relative importance of predictors of math and science achievement: An opportunity-propensity analysis. Contemporary Educational Psychology, 32, 599–629. doi:10.1016/j.cedpsych.2006.09.002.
Chiu, M. M., & Klassen, R. M. (2010). Relations of mathematics self-concept and its calibration with mathematics achievement: Cultural differences among fifteen-year-olds in 34 countries. Learning and Instruction, 20(1), 2–17. doi:10.1016/j.lindif.2007.03.007.
Chiu, M. M., Chow, B. W. Y., McBride, C., & Mol, S. T. (2016). Students’ sense of belonging at school in 41 countries: cross-cultural variability. Journal of Cross-Cultural Psychology, 47(2), 175-196. doi:10.1177/0022022115617031.
Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Singapore: Sage.
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel hierarchical models (Vol. 1). New York, NY: Cambridge University Press.
Goldstein, H. (2011). Multilevel statistical models (4th ed.) (Wiley Series in Probability and Statistics). John Wiley & Sons.
Hampden-Thompson, G. (2013). Family policy, family structure, and children’s educational achievement. Social Science Research,42(3), 804–817. doi:10.1037/0022-0663.95.1.124.
Hattie, J. A. C. (2009). Visible learning: a synthesis of over 800 meta-analyses relating to performance. New York, NY: Routledge.
Hox, J.J. (2010). Multilevel analysis: Techniques and applications (2th ed). New York, NY: Routledge.
Kim, J. S., Anderson, C. J., & Keller, B. (2013). Multilevel analysis of assessment data. Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis, 389-425.
Lamb, S., Hogan, D., & Johnson, T. (2001). The stratification of learning opportunities and achievement in Tasmanian secondary schools. Australian Journal of Education, 45(2), 153-167. doi:10.1177/000494410104500205.
Marks, G. N., Cresswell, J., & Ainley, J. (2006). Explaining socioeconomic inequalities in student achievement: The role of home and school factors. Educational Research and Evaluation, 12(2), 105-128. doi: 10.1080/13803610600587040.
Martins, L., & Veiga, P. (2010). Do inequalities in parents’ education playan important role in PISA students’ mathematics achievement test score disparities?. Economics of Education Review, 29(6), 1016–1033. doi:10.1016/j.econedurev.2010.05.001.
Martin, M.O., Mullis, I. V. S., Foy, P., & Stanco, G.M. (2012). TIMSS 2011 international results in science. Chestnutt Hill, MA: TIMSS & PIRLS International Study Center.
McCoach, D. B., Gable, R. K., & Madura, J. P. (2013). Instrument development in the affective domain. New York, NY: Springer.
Ministry of Education, MOE. (2013). Malaysian education blueprint 2013–2025: preschool to postsecondary education. Putrajaya: MOE.
Mullis, I., Martin, M., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnutt Hill, MA: TIMSS & PIRLS International Study Center.
OECD (2009). PISA data analysis manual: SPSS second edition.
OECD (2013). PISA 2012 results: excellence through equity—giving every student the chance to succeed Vol. II. Paris, France: PISA, OECD Publishing. doi:10.1787/9789264201132-en.
OECD. (2017a). PISA 2015 Results (Volume III): Students' Well-Being. Paris, France: PISA, OECD Publishing. doi:10.1787/9789264273856-en.
OECD. (2017b). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving. Paris, France: PISA, OECD Publishing. doi:10.1787/9789264281820-en.
OECD. (2017c). PISA 2015 Technical Reports. PISA: OECD Publishing. http://www.oecd.org/pisa/data/2015-technical-report/.
Prensel, M., Kobarg, M., Schöps, K., & Rönnebeck, S. (2013). Research on PISA: research outcomes of the PISA research conference 2009. New York, NY: Springer.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.
Stankov, L. (2013). Noncognitive predictors of intelligence and academic achievement: An important role of confidence. Personality and Individual Differences, 55(7), 727–732. doi:10.1016/j.paid.2013.07.006.
Steele, F. (2008). Module 5 (concepts): Introduction to multilevel modelling. Centre for Multilevel Modelling. Bristol, England: University of Bristol.
Spiegelhalter, D. (2013). The problems with PISA statistical methods. Retrieved from http://www.statslife.org.uk/opinion/1074-the-problems-with-pisa-statistical-methods.
Tabachnick, B., & Fidel, S. L. (2013). Using multivatiate statistics, 6th ed. Boston, MA: Pearson Education.
Taylor, G., Jungert, T., Mageau, G. A., Schattke, K., Dedic, H., Rosen field, S., & Koestner, R. (2014). A self-determination theory approach to predicting school achievement over time: The unique role of intrinsic motivation. Contemporary Educational Psychology, 39, 342–358. doi:10.1016/j.cedpsych.2014.08.002.
Willms, J. D. (2003). Student engagement at school: A sense of belonging and participation. Paris, France: OECD Publishing.
Woltman, H., Feldstain, A., Mackay, J. C., & Rocchi, M. (2012). An introduction to hierarchical linear modeling. Tutorials in Quantitative Methods for Psychology, 8(1), 52–69. doi:10.20982/tqmp.08.1.p052.DOI: https://doi.org/10.21831/jrpm.v4i2.16931
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Jurnal Riset Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Riset Pendidikan Matematika indexed by:
Â
Jurnal Riset Pendidikan Matematika by http://journal.uny.ac.id/index.php/jrpm/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. p-ISSN 2356-2684 | e-ISSN 2477-1503
View My Stats